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: KROLL, JAMES T. An Analysis of the Error Characteristics of Atlantic

Tropical Cyclone Track Prediction Models. (Under the direction of MARK
DEMARIA).

S\ e X

-‘-
oy

Using 140 track forecasts between 1976-1985, the error characteristics

of the National Hurricane Center's tropical cyclone track prediction models

-r.'s are assessed with special emphasis on the Moveable Fine Mesh(MFM) model.
X ;’i The results indicate that beyond the 12-hour forecast, the MFM has the

L lowest mean forecast error of the NHC models. The forecast error
component, relative to storm motion, are also analyzed. The MFM displayed
i’. the smallest mean across-track error, which is a measure of the accuracy of
4 the path of movement.
| ,E A consensus style track forecast known as the Combined Confidence
‘ 2:_". Weighted Forecast(CCWF) scheme is tested using the track prediction output
from NHC models. The CCWF provides improved track forecasts at 12 and 24
-' Ex hours relative to the individual track prediction models. The CCWF scheme,
'.:; on average, is also more accurate than the official forecast disseminated by
. NHC.
:": An attempt is made to develop linear regression models, using

{ independent variables which describe storm characteristics and the

; large-scale wind field, to predict the magnitude of the NHC track prediction ‘
E: model forecast errors. Correlations between these variables and the

EE forecast errors are extremely weak and the regession models developed do

P not explain a large percentage of the variance in the forecast errors.
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AN Finally, a spectral barotropic model is used to identify the effects that

E,.: sparse data and initial position errors have upon track forecast errors.

. ,& Various scales of motion are removed from the initial wind field to test the
N effect of sparse data. The forecast errors do not increase significantly until
' scales at and below 1000 Km are removed from the initial field. [nitial
position errors are also introduced into the model when it is initialized.

These initial position errors have a significant affect upon the mean
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forecast errors at 12 hours, however, by 24 hours the affect decreases

dramaticaly and by 48 hours the initial postion errors have no affect upon

the mean forecast errors.
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ABSTRACT

KROLL, JAMES T. An Analysis of the Error Characteristics of Atlantic
Tropical Cyclone Track Prediction Models. (Under the direction of MARK
DEMARIA).

Using 140 track forecasts between 1976-1985, the error characteristics
of the National Hurricane Center's tropical cyclone track prediction models
are assessed with special emphasis on the Moveable Fine Mesh(MFM) mode!.
The results indicate that beyond the 12-hour forecast, the MFM has the
lowest mean forecast error of the NHC models. The forecast error
component, relative to storm motion, are also analyzed. The MFM displayed
the smailest mean across-track error, which is a measure of the accuracy of
the path of movement.

A consensus style track forecast known as the Combined Confidence
Weighted Forecast(CCWF) scheme is tested using the track prediction output
from NHC models. The CCWF provides improved track forecasts at 12 and 24
hours relative to the individual track prediction models. The CCWF scheme,
on average, is also more accurate than the official forecast disseminated by
NHC. |

An attempt is made to develop linear regression models,»using
independent variables which describe storm characteristics and the
large-scale wind field, to predict the magnitude of the NHC track prediction
model forecast errors. Correlations between these variables and the
forecast errors are extremely weak and the regession models developed do

not explain a large percentage of the variance in the forecast errors.
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Finally, a spectral barotropic model is used to identify the effects that
sparse data and initial position errors have upon track forecast errors.

o Various scales of motion are removed from the initial wind field to test the
effect of sparse data. The forecast errors do not increase significantly until
scales at and below 1000 Km are removed from the initial field. Initial
position errors are also introduced into the model when it is initialized.

X These initial position errors have a significant affect upon the mean
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forecast errors at 12 hours, however, by 24 hours the affect decreases
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dramaticaly and by 48 hours the initial postion errors have no affect upon

I
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the mean forecast errors.
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1. INTRODUCTION

1.1 General Comments

The prediction of the track of tropical cyclones may be considered one of
the most difficult tasks in synoptic meteorology. Although some storms
move along a steady, predictable path and are considered 'well behaved’,
other storms exhibit eratic movement making it virtually impossible to
forecast an acceptably accurate storm track. For a storm which threatens
populated coastal regions, accurate track forecasts, out to at least 24
hours, are necessary to give residents sufficient advanced warning to take
appropriate action.

The standard measure of track prediction forecast accuracy is the
forecast error (FE), which is simply the vector distance between the
observed and forecast postion of the tropical cyclone. Analyses of the
accuracy of the official track forecasts produced by the National Hurricane
Center (NHC) are well documented. A study by Dunn et.al.(1968) indicated a
12% decline in the mean forecast error (MFE) between 1958-1966. The
improvement in track prediction accuracy was largely attributed to the
increased availability and use of objective guidance models. With better
objective guidance models in the research phase of development, there was
a general belief that the decline in MFE's would continue right through the
1970's. In fact, the Department of Commerce report on Hurricane Camille
recommended in 1969 that the 24 hour MFE of the official forecast be
reduced from 180 Km to 120 Km by 1974. More recent studies indicate that

this goal was never accomplished. An analysis by Neumann and Pelissier
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(1981b) indicated that the MFE of the official forecast for the entire decade
of the1970's was 175 Km, a very negligible decline from the 1969 level.

The relatively small decrease in the official forecast MFE is somewhat
surprising considering that several track prediction models became
available during that time period. By 1976, NHC forecasters had output from
up to seven models available to them for guidance. The bases for these
models are varied. Some models use statistical procedures while others use
dynamical principles to predict the storm movement. Neumann and Pelissier
(1981a) analyzed the error characteristics of these models and decided that
no one model was particularly superior or inferior. Each model had some
temporal, economic or spatial advantage. Therefore, they projected that
objective guidance would be obtained from a number of different models for

quite some time.
1.2 Statement of Intended Research
The general purpose of this research is to study the characteristics of

the forecast errors of tropical cyclone track prediction models. The first

section analyzes the characteristics of the NHC operational track prediction

models. The second section analyzes the effectiveness of some objective
techniques for reducing the forecast errors associated with those
prediction models. The final section uses numerical simulations of track
forecasts to determine the relationships between initial position errors and

inadequacy in the data coverage to the magnitude of the forecast errors. A
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..
:::: a. Analysis of the Operational Model Forecast Errors

e

Ny Neumann and Pelissier (1981a) is an in depth study of the general error
: characteristics of the NHC operational track prediction models. However,
X ‘g the analysis of the Moveable Fine Mesh (MFM) model is limited because this
: :::‘\ model was not operational until 1976. Other studies of the MFM such as
:" Hovermale and Livezey (1977) are also limited to three to four year periods.
:.; As an update to the research of Neumann and Pelissier, the first section
:Eé of this study is devoted to a detailed analysis of the error characteristics
2 of the MFM and how it compares with other operational track prediction
J models as well as the official forecasts disseminated by NHC. Data from
\ model and official forecasts between 1976-1985 are used to perform this
j:'\':.: analysis. Performance values, as defined by Neumann (1979), are computed
o to assess the skiil of the MFM in relation to climatology and persistence
:i which are considered the basic tools of meteorology and an excellent
:: benchmark for comparison. The MFE's of the models and the official
;;-;: forecasts are separated into their latitudinal and longitudinal components
: to assess directional biases associated with the track predictions. To
E';: incorporate storm motion into the components of the MFE's, the coordinate
system is rotated such that the Y-axis is parallel to the instantaneous
*: motion of the storm. This rotation effectively changes the the MFE
.‘ components to reflect along and across track errors.

3
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janid

N b. Testing Methods for Improving Track Prediction Model Guidance
‘
.
W The second section of this study is an expanded version of the research
Lo
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3}' by DeMaria (1985a) which provided hope that the FE's of certain track
.,'_. prediction models could be predicted using linear regression techniques. In
:” particular, DeMaria used independent variables which described the wind
i E-‘ field to predict the magnitude of the forecast error. To confirm that FE's
can be predicted, a larger data set and more independent variables are used.
'-“.; Another potential solution for improving forecast guidance was
recently developed by Tsui and Truske (1985). The Combined Confidence
Y \_._ Weighted Forecast (CCWF) scheme is a ‘consensus’ style forecast which uses
x the track prediction output of operational models to produce a new track
J_ prediction. This scheme was developed for the Joint Typhoon Warning
.'- Center (JTWC) to reduce the confusion when any number of the 26
>\ operational track forecast models were providing conflicting results. The

N CCWF concept has been extensively tested on the JTWC models but not on
4 the NHC models. This study also includes a test of the CCWF using NHC track

prediction model forecasts.
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c. Theoretical Tests of Effects of Sparse Data
o Coverage and Initiail Position Errors
2%
.f,-_:_ Tropical cyclones frequently track through open ocean regions of the
’”_ Atlantic which are essentially void of meteorological data. This void
\gf*\- prohibits dynamical models from accurately representing the wind field
3« in the vicinity of the storm during the initialization process. Given that
~";~ there is some error in the initial wind analysis, it is important to ask: Is
éi- there 2 limit to the accuracy of these track prediction models? The final
'; section of this research adresses this question. A spectral barotropic
5
3
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2‘.;»‘: model, described by DeMaria (1987), is used to produce track forecasts for
{ " some selected storms from previous years. Since this model uses spherical
; E harmonic functions to represent the wind field, data from shorter
'2 wavelengths are removed from the initial wind field to simulate the effect
.: of the sparse data coverage. The model simulations are repeated , each time
\a . . .

2!- removing information about larger wavelengths, to assess the wavelength
<y region that has a critical effect on track forecast accuracy.

. Another problem that can affect the accuracy of track prediction
\,S models are the errors in the initial positioning of the vortex center. An
‘;-'_is important question to ask here is: Can we quantify the effect of these
3,: errors on track prediction models? In an attempt to answer this question,
j the barotropic model mentioned earlier is used to simulate the effect of
.-:’.: initial position errors. In particular,model simulations are executed with
,‘_.J the vortex center displaced in a variety of directions and distances trom the
'_\( actual storms center. The last portion of this research analyzes the results
o= of this test, |

7

; 3.: 1.3 Governing Principles of NHC's Track Prediction Models

o

: A major portion of this study involves analysis of the error
\ characteristics of the NHC tropical cyclone track prediction models.

:E Therefore, it is worthwhile to briefly review the concepts on which these
' prediction models are based. NHC currently has seven operational tropical

cyclone track prediction models with others in the developmental stage.
; The basic rationale of these models is listed below:
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o

o ¢
e 2. HURRAN

_\ The HURRicane ANalog model (Hope and Neumann, 1970) is based on the
EE concept that tropical cyclone tracks can be grouped into ‘families’. The
.-E‘i model scans all storm tracks since 1886 in search of tracks similar to the
? current storm. Candidates for the analog family of storms are selected
R using storms which 1) occured within 15 days of that Julian date, 2)
?g passed within 2.5 degrees of latitude, 3)were moving within 5 knots of the
~._~ current storm speed.  Although the analog model has a poor performance
'} record, forecasters like this model because the track is accompanied by
‘ ;:-'C.' probability ellipses. One shortfall to the analog method is that forecasts
:; are not derived when the current storm track is anomolous.

:,;E b. CLIPER

;’: The CLImatology and PERsistence mode! (Neumann, 1972) uses least
squares regressions to derive a track forecast. CLIPER uses eight first
, order predictors including storm position, current and 12 hour oid u and v
;;{ component storm speeds, Julian day and maximum wind speed. The model
was originally designed as a backup for the times when HURRAN failed to
-'%’ produce a forecast, however, CLIPER very consistently outperforms HURRAN

L especially in recurvature situations (Neumann, 1977).

:tﬁ ¢. NHC67 and NHC72

:‘::- The basis for the NHC67 (Miller, et.al.,1968) and the NHC72

f‘ii (Neumann, et.al.,, 1972) models are quite similar to CLIPER. The major
.{3 difference is that the models also incorporate 24 hour old 1000, 700 and
E" 500 mb geopotential heights as predictors. Between the NHC67 and NHC72,
\-:,, the major difference is that the NHC72 has a larger dependent data set .

vy o , ' v
JN ‘ 1. n o) .0' .0"."0.‘ 3 :'0.0 oo .v"."’ '.t’tf:'l.o o "'l, HORAN :'1- 0,\".:'023'09. Qo c‘ u.f“aa EAX "c"- "’,‘!‘a‘f’o.‘f‘s’"
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o d. NHC73

_\'_ The NHC73 model (Neumann and Lawrence, 1975) is also a least
squares statistical model which uses the output of CLIPER. It also uses
‘ dynamic meteorological parameters including current, 24, 36 and 48 hour
:", geopotential heights as predictors. The future geopotential heights are
i obtained from the NMC primitive equation mode).

o e. SANBAR

,‘_: The SANders BARotropic model (Sanders, 1975) is based on the
:{: concept that momentum advection of vorticity is the primary factor in
'C_'; tropical storm motion. In other words, the motion of tropical storms is
:' mostly a function of the interaction of the vortex with the large scale

steering currents of the atmosphere. To predict the storm track, the model
oA develops a streamfunction field from pressure weighted deep layer mean

’ winds which are used to initialize the model. The barotropic vorticity

-_’;% equation is then solved foward in time and the storm position is identified

W by the minimum in the streamfunction field.

, f. MFM

» N

. -EZ The Moveable Fine Mesh model (Hovermale and Livezey, 1977) is a
EZ baroclinic model which operates under similar physical premises as the

:. primitive equation models. One unique advantage that the MFM has is that
;E the grid is capable of moving with the storm throughtout the forecast period
'."-

- of the model. Also the MFM has a finer resolution both vertically and

:7. horizontally than many other models based on the primitive equations.
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' 2. Error Characteristics of NHC Track Prediction Models
E 2.1 Data and Definitions
..
ﬁ'; Neumann and Pelissier (1981a) stressed the importance of developing a
,3 homogenous data set when analyzing the error characteristics of tropical
"
( cyclone track prediction models. Several factors, including maintaining
Es homogeneity, placed severe restrictions on the data sample developed for
" this investigation. The most severe restrictions were 1) the MFM is only
~' utilized for storms which potentially threaten populated areas, 2) the MFM
must project the storm track out to at least 48 hours, and 3) the analog
mode! (HURRAN) does not run under anomolous forecast situations. The first
restriction immediately reduced the number of forecast cases to under 200.
5 The second restriction removed another 25% of the cases from
ﬁ consideration. When the third restriction was imposed, only 60 forecast
> cases remained. In the interest of developing the largest sample set
\ possible, the third restriction was not imposed. Therefore, data from the
'.:' HURRAN model were not included in this study. Under these criteria, a
® sample set consisting of 140 12-48 hour forecast cases and 56 72-hour
:l forecast cases was assembled.
E To assess the forecast error (FE), knowledge of the actual storm track
; is necessary. For this study, the best track data is used. Best track is the
’; post storm analysis of hourly positioning of the storm. This data is
generally more accurate than the track information available at forecast
. time. The FE, which is used to assess the track prediction models’ forecast
‘ accuracy, is easily calculated using spherical trigonometry. If &, and &,
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9
represent the best track and model forecast storm latitudes for a certain

time, than the FE is computed using 2.1 where AX represents the difference

FE = CF % ARCCOS (SIN @ *3IN @+ COS & *COS®,* COSAN) 21

between the best track and model forecast longitudes. The conversion
factor (CF) equals 60 if FE's are measured in nautical miles and equal 111 if
FE's are measured in kilometers. To obtain the latitudinal and longitudinal

components, a plane geometric approximation is used. The latitudinal

(north-south) component is approximated by CF*( @5~ &) while the

longitudinal (east-west) component is approximated by CF*COS® *A X where

@ represents the mean cosine value using ¢y and ®,. These geometric

approximations create small errors, especially at distances far from the

equator, however, for this study the approximation errors are negligible.
2.2 Analysis of the Mean Forecast Error Characteristics

A summary of the MFE's for this study is listed in Table 2.1. The
HURRAN model is omitted due to the homogeneity probiem discussed earlier.
From these data, it is evident that the MFM displays superior track forecast
accuracy at and beyond the 24-hour forecast period. This fact is true for
the entire sample as well as the stratified subsets for storms which are
initially north or south of 259 N.

Neumann and Pelissier (1981a) correctly state that MFE’s , such as those

listed in Table 2.1, reveal little information about the skill of a forecast

000

B l [) ) [) O OONNY
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,‘3?-% TABLE 2.1. Mean Forecast Errors (Km) for NHC tropical cyclone track
. prediction models and official forecasts for entire sample, northern storms
' and southern storms. Official forecasts do not include 36-hour track
g prediction.
292 ENTIRE SAMPLE
) MODEL Forecast Interval '
24 12 24 36 48 72
k32 CLIPER 1036 2144 3438 4865 7202
o NHC67 955 1846 3022 4445 7388
( NHC72 101.3 2129 3633 4673 6352
'f;'g NHC73 90.4 1914 2939 4202 7369
o SANBAR 98.6 2039 3259 4635 7722
N MFM 109.3 1751 2339 2956 3892
e OFFICIAL 91.4 1894  __ 4023 6218
by NO. FORECASTS 140 140 140 140 56
! ':\:
o NORTHERN STORMS
’ CLIPER 99.8 2198 3591 5181  729.1
-y NHC67 95.1 1963 3287 4827 7568
o NHC72 962 2189 3685 4839 6400
o) NHC73 89.4 1953 2981 4273 6910
@) SANBAR 975 . 2036 3323 4794 7500
3 MFM 1152 1872 2489 3174 3925
w OFFICIAL 89.5 1942 __ 4255 6578
s NO. FORECAST 89 89 89 89 39
5 SOUTHERN STORMS
Wl CLIPER 1105 2051 3176 4313 6999
o NHC67 9.1 1644 2564 3785 6975
e, NHC72 106.6 2026 3517 4386 6244
= NHC73 922 1842 2863 407.1 8484
o SANBAR 100.6 2046 3142 4348 8316
o MFM 98.9 1542 2078 2577 3817
. OFFICIAL 947 181.0 —~ 3636 5606

?
N NO. FORECAST 51 51 51 51 17
b
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model. Policy set forth by the American Meteorological Society defines

*"s forecast skill as an ability to achieve forecast accuracy greater than
::E accuracy achieved through basic methods. In meteorology, the basic
\ = methods of forecasting inciude climatology and persistence. Therefore, the
}_‘ CLIPER model is a logical choice to use as a benchmark to compare the skill
\_: of other track prediction models. Using this concept, Neumann (1979)

'

developed a simple method for assessing the performance skill of these

')

N models. The performance skill is defined as
R0
54
o P =100*(E.-E ,)/E 22
N
> where E. is the MFE of the benchmark model, in this case CLIPER, and E, is
:\ the MFE of the model of interest. Simply stated, this method uses the
)'\
jl CLIPER model to "normalize™ the MFE's of the other forecast models and
7 creates a measurement which allows comparison of skill between stratified
data sets.
._ Figure 2.1 represents a plot of the performance values for the five
N track prediction models and for the official forecast. Positive performance
o, values indicate that a model has greater skill than CLIPER while negative
L
3 values indicate that a model is inferior to the basic tools of climatology and
‘.C persistence. For the entire sample, the NHC67, NHC72 and NHC73 display
)
e maximum improvement over CLIPER at 24-36 hours with performance
) decaying through 72 hours. Of greater significance is the performance of
the MFM.  Although it is inferior to CLIPER at 12 hours, the MFM's
[ ]
o performance is better than CLIPER at 24 hours and continues to improve
:E:
"
&
W
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14
through the 72-hour period. On average, the maximum improvement of the

other models and the official forecast over CLIPER is 10 - 15%. In sharp
contrast, this study indicates that the MFM's performance surpasses CLIPER
by 31%, 39% and 46% at 36, 48 and 72 hours respectively.

Some interesting variations in performance are exhibited for the
latitudinally stratified data sets. Observations of interest include:

1) The NHC67 performs better than CLIPER through 48 hours for southern
storms. This is in contrast to the findings of Neumann (1979).

2) The NHC72 displays a characteristic decline in performance at 24 and
36 hours for both northern and southern storms.

3) Except at 12 hours, the NHC73 performs much better for northern
storms . This is consistent with Neumann (1979).

4) The SANBAR also performs better, relative to CLIPER, on northern
storms. This is somewhat surprising considering that the model rationale
is better suited for the southern zone.

5) The MFM displays a 10% improvement over CLIPER at 12 hours in the
southern zone. Therefore, the overall poor performance of the MFM at 12
hours appears to be a result of poor early performance on northern storms.
Also, the MFM is still the superior model in both zones at and beyond 24
hours. It is noted that little emphasis is placed upon the 72-hour
performance for tie stratified data sets. With only 56 cases in the entire
sample, the small size of the stratified data sets cast doubt on their
usefulness.

Of particular interest is a comparison of these results with the 4-year
study in Neumann and Pelissier (1981a). The earlier study indicates that

the MFM's performance skill was significantly worse (P = -38) at 12 hours
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and about equal with CLIPER at 24 hours. Uncertainties in the initial

- > > o o g
- L e S d TV ela'v s
P 'l‘ F-.,. f;.’.‘... /. " - . "' ./ 'l. l/.

analysis were cited as the causitive factor for the poor early period

performance and efforts were underway at that time to improve the

7 DR
. e

initialization process. The current study suggests that the MFM's inferiority
to CLIPER at 12 hours has decreased substantially. The overall performance
of the MFM is only 7% worse than CLIPER at 12 hours and displays an 18%

improvement over the benchmark model at 24 hours.

= X
" .. AN

The results of this analysis indicate that improvement to the MFM's

S initialization process have lead to improved early period forecasts. To
:‘ confirm this finding, the data set was stratified into two groups. Group |
’: represents all forecasts between 1976 - 1981 and contains 63 cases while
f Group 2 represents forecasts between 1982 - 1985 and contains 77 cases.
5 Performance values for these groups are displayed in Figure 2.2. It is
A obvious that MFM forecasts during 1982 - 1985 exhibit greater skill than
3 forecasts during the earlier operational years of the model. It is noted that
! Figures 2.1b and 2.1¢ show that the 12-hour performance of the MFM is much
:\ better for southern storms. It is possible that a disproportionate ratio of
';: northern and southern storms in either group could have biased the results
. in Figure 2.2. A survey of the data, however, indicates that Group | has an
.:: equal ratio of storms from each zone and Group 2 contains seven northern
i: storms for every three southern storms. Therefore, it is evident that
; latitudinal bias is not the cause of the improved 12-hour MFM performance
S: and we must conclude that improvements to the MFM's initialization process
:g have resulted in more accurate 12-hour forecasts.

An important question to ask at this time is what aspects of the FE

-

distributions lead to such a large difference between the MFE's of the MFM
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Fig. 2.2. Performance of MFM in relation to CLIPER model from 1976-1981
and 1982-1985.
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and the other track prediction models? |s it because the MFM produces much

more accurate forecasts or is it because the other models are more prone to
producing some very inaccurate forecasts which bias their MFE's upward?
An anlysis of the FE distributions indicates that the disparity is a result of
contributions from both processes.

Figures 2.3 and 2.4 represent the percentage distributions of the FE's
for all six track prediction models at 24 and 48 hours, respectively. At 24
hours, the MFM, NHC67 and NHC73 all have 60% of their FE distributions
below 175 Km. This is not surprising since these are the models with the
lowest MFE's at this time period. The superiority of the MFM at 24 hours
results from the fact that 90% of the distribution lies below 300 Km whiie
for the other two models the 90% mark lies at 350 Km. Although the NHC67
and NHC73 are not very prone to producing the extremely inaccurate
forecasts, it is clear that the upper 10% of their distributions have a much
larger contribution to their MFE's when compared to the MFM. '

The model which appears most likely to produce the extremely
inaccurate forecasts is the NHC72. it's FE distribution reveals that 60 % of
the distribution lies below 200 Km while the upper 10% of the distribution
lies above 450 Km. Clearly, the upper tail of the NHC72 FE distribution
results in a much larger MFE.

The FE distributions at 48 hours better demonstrates the accuracy of
the MFM track forecasts. For the MFM, 60% of the distribution lies below
about 250 Km. For all other models the lower 60% of the distributions lie
below 450 Km. Again the MFM produces very few extremely inaccurate

forecasts at this time period. The upper 10% of the distribution lies above

500 Km while the upper 10% mark for the other models lies between
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750-900 Km. Another striking feature is the large number of extremely

accurate forecasts produced by the MFM. Approximately 18% of the FE's are
below 100 Km and 33% are below 150 Km. None of the other track
prediction models can compare with the frequency at which the MFM
produces superlative long-range track forecasts.

From this analysis it is fair to say that under the conditions for

which the MFM is activated, it is a clearly superior track forecast model.

'_’E‘ Its extremely high performance skill is a result of its ability to avoid
NN

R _.N producing the extremely inaccurate track forecasts in the short to
o mid-range forecast periods as well as produce some very accurate
i

B long-range forecasts.

‘ l.\

St

20
(' 23 Analysis of the Forecast Error Components

X

L

'é:_-: In addition to analyzing the magnitude of the track prediction model
MFE's, analysis of the FE components can also be helpful in assessing the
:: y error characteristics of the forecast models. In particular, analysis of the
NS

FE components can identify directional biases that may exist. Since FE

Vil e

® components can take on both positive and negative values, a truly unbiased
“E model should have a mean component error or systematic error
‘: 3: approximately equal to zero.

:{' Figure 2.5 displays the analysis of the systematic latitudinal
w (north-south) errors. Negative values indicate that the predicted track
" tends to be south of the observed track. For the entire sample, the NHC67,
. NHC72, CLIPER and the MFM exhibit a nominally smail bias. In contrast, the
'{: SANBAR displays steady growth of negative systematic error. The NHC73,
e
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o
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B 25
{ ' which appears to be unbiased through 36 hours, exhibits a rapid growth in
™
& systematic error through 72 hours. The larger negative systematic errors in
o g ger neg y
Sj the later two model may be indicative of their inability to predict an
A. accurate track for recurving storms. _
b For northern storms only, the NHC67 is the least biased model in
Lo
L E: terms of latitudinal errors. This finding is consistent with Neumann(1979)
( which discusses the NHC67's ability to predict accurate tracks for storms
\,a recurving along the eastern United States. The SANBAR and NHC73 models
Y
g again display the largest negative biases at 48 hours while the MFM exhibits
L
° a fluctuating bias which is difficult to interpret.
:§ For southern storms only, most models display very little bias
5, through 48 hours. The MFM appears to perform especially well in this
: category. The largest negative bias is again the NHC73 while the NHC67 is
g g 9 g 9
: the only model to display a positive bias. Perhaps the attributes of the
I,
}:; NHC67 which make it perform so well on recurving northern storms causes
) it to recurve southern storms too early.
f Figure 2.6 is a graph of the systematic iongitudinal (east-west)
J‘I
o errors. Negative values indicate that the predicted track tends to be west
e
PY of the observed track. For the entire sample, the systematic longitudinal
';; biases are relatively small through the 48-hour period. The NHC?72 and
é NHC?73 have slight westward biases at 36 hours, but, both models reduce
; that bias at 48 hours. Eastward bias is displayed by both dynamic models
) " through 48 hours. The MFM seems to compensate for this bias by 72 hours ,
however, the SANBAR's bias continues to grow.
g , For northern storms only, the MFM exhibits the largest magnitude of
{ bias. The MFM's bias pattern is almost identical to the pattern for the |
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Fig. 26. Systematic longitudinal forecast errors (Km) for NHC track
forecast models for (a) entire sample, (b) northern storms and (c) southern
storms. Negative values indicate that forecast track is east of observed
track.
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28
entire sample. The SANBAR model also displays a steadily growing
eastward bias through 48 hours. In contrast to the northern subset, the MFM
and SANBAR exhibit very littie bias for the southern storms. However, the
series of NHC statistical models all exhibit distinct westward biases
especially at 36 and 48 hours. The growth of the NCH67 errors is surprising
since negative systematic longitudinal errors is symptomatic of not
predicting recurvature of certain storms. This is in conflict with the
resuits for the latitudinal errors for the southern storms.

One other general characteristic of the systematic errors is worth
noting. The CLIPER model, which is the least complex of the statistical
prediction models, also displays the least bias both for the latitudinal and
longitudinal errors. This characteristic is true for both northern and
southern storms.

Lack of bias in a track prediction model is a desirable characteristic,
however, it does not guarantee that a model is the most accurate. CLIPER is
an excellent example of this. The previous analysis confirms that CLIPER
displays the least bias, yet in the 24-46 nhour iorecasi range, the other
forecast models have lower MFE's. Further proof that bias and accurate
track prediction are not necessarily linked is displayed in Figure 2.7 which
exhibits the absolute mean of the latitudinal and longitudinal error
components. Clearly the CLIPER model is among the worst performers in
both categories. It is also evident that the MFM is the best performer in
both categories.

Analysis of the MFE components yields general information about the

directional error characteristics of these track prediction models, however,

the latitudinal and longitudinal components can have different
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interpretations depending upon the motion of the storm. For example, a
latitudinal error represents an error along the track for storms moving
northward, however, it represents an error across the track for a storm
which is moving eastward.  To avoid this conflicting representation,
Neumann and Pelissier (1981a) propose a method for incorporating the
storm motion into the MFE components. By rotating the y-axis such that it
is parallel to the instantaneous motion of the storm, the MFE components
are altered to reflect the across-track components (CTE) and along-track
components (ATE).

Figure 2.8 graphically displays how the FE's are rotated to represent
the ATE's and CTE's. If a storm is located at the origins of the axes, moving
toward the northeast, and the model forecast position is at point F, then the
ATE and CTE components are easily determined. The physical meaning of the
components is simple and direct. The CTE basically represents the accuracy
of the models prediction of the path of movement. The ATE mainly, but not
entirely, represents the models ability to predict the speed of the storm. It
is important to note that the ATE does not exactly represent the error in
predicted storm speed. This is because the error in predicted direction
automatically creates an ATE component of the FE. Therefore caution must
be exercised when interpreting the ATE's.

Figure 2.9 represents a plot of the mean ATE’s versus the mean CTE's
for the entire sample as well as northern and southern storms. For the
entire sample, the NHC67, NHC73, CLIPER and MFM exhibit left-of-track
bias during the early forecast period, but shift to a right-of-track bias by
48 hours. The NHC72 and SANBAR exhibit a strictly left-of-track bias. The

major feature is the consistently small directional bias (CTE) of the MFM.
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arrow. Along track error and across track error components are represented
by ATE and CTE respectively.
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T Although the NHC67 rivais the MFM's ability to predict the path of
N

movement, its larger ATE's make the MFM the better model in terms of

2
P he .

minimized bias.

CX X X QX A
”.
SAN

The latitudinally stratified samples exhibit some different

- W
_x

E characteristics. For northern storms, almost all models display a maximum
~ left-of-track bias at 24 hours which shifts to a right of track bias by 48
(. hours. For southern storms, left of track bias through 48 hours is
:" characteristic of all models except the MFM and NHC67. As might be
;- expected, the ATE's are much larger for the northern storms. |
;: For both stratified samples, the MFM is the model displaying the least
E{ amount of bias. For southern storms, the CTE's of the NHC67 are lower than
E., the MFM, however, the ATE values of the NHC67 at 24 hours are larger than
- those of the MFM at 48 hours. The overall combination of smaller ATE and
:’f;? CTE values makes the MFM the model with minimized bias.
% As stated earlier, lack of bias is a desirable attribute bui does not
\‘) guarantee that a model is providing the most accurate forecasts. Accuracy
’ f& is determined only by the absolute mean errors. Table 2.2 lists the absolute
~(‘:': cross track errors for the entire and stratified samples. For all cases, no
e
5} model exhibits superiority in minimizing the CTE at 12 and 24 hours. At 36
R > hours, the MFM displays slight improvement over the other models and by 48
‘ " hours it has a 24% smaller across-track error than the NHC73, the next most
:j accurate model. For northern storms, the SANBAR CTE's rival that of the
.55 MFM, however, by 48 hours the MFM is again the superior model. For
SE southern storms, the NHC67, NHC73 and MFM show the smallest CTE's
; through 36 hours with the MFM taking best honors at 48 hours.
§ In the analysis of the ATE's and CTE's, the MFM appears to be the
‘.
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P TABLE 2.2. Absolute mean values of across-track errors (CTE) for entire
2 sample, northern storms and southern storms. Errorsare inkm.
;E;l.

o ENTIRE SAMPLE

$ MODEL Forecast Interval

o 12 24 36 48
RN
' CLIPER 613 1179 1783 2203
R NHC67 55.1 100.8 160.8 221.1
3 NHC72 54.9 102.3 171.9 218.0
b "~‘~§ NHC73 51.5 103.2 152.4 189.4
= — SANBAR 58.9 1036 1569  201.3
s MFM 59.3 102.3 136.3 1446
Wy

e NORTHERN STORMS
"u
= CLIPER 54.8 116.1 1727 2178
b NHC67 55.3 1039 1824 2377
& NHC72 52.0 107.5 183.8 229.0
’ NHC73 49.9 108.5 1605  211.3
Pt SANBAR 54.2 947 1440 196.8
< MFM 60.9 107.4 1416 1446
e

o SOUTHERN STORMS

-

3,2 CLIPER 72.4 120.9 187.2 2241
L NHC67 546 95.7 1270 1957
2 NHC72 59.8 93.8 153.3 201.1
R NHC73 54.2 93.9 138.6 152.8
3; SANBAR 67.2 1189 178.9 208.3
% MFM 56.4 93.9 127.9 1445
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dominant performer among the track prediction models, both in terms of

bias and minimum absolute errors. The minimized CTE's associated with the
MFM reflect its ability to accurately predict the path of movement tiopicai
storms. The Fiorino and Harrison(1982) study of the Navy's Nested Grid
Model concludes that the advantage of dynamic models, like the MFM, lies in
their ability to accurately predict the path of movement. The results of this

test verify their conclusion.

2.4 Analysis of Model Speed Errors

In the previous section, the large negative ATE components suggest that
many of the track prediction models exhibit a siow speed bias. This bias is
discussed in several studies of various track prediction models. Speed
errors (observed minus forecast speed) in this study are computed using a
12-hour interval point-to-point method. This is not the most accurate
method, but its simplicity makes it appealing to use.

The systematic speed errors for the entire and latitudinally stratified
samples are displayed in Figure 2.10. For all cases, many of the models
exhibit a decline in the speed errors at 24 hours while the-MFM and NHC72
continue the decline through 36 hours. By 48 hours, all models except the
NHC67 display a rapid growth in speed error. This rapid error growth is also
evident in the northern subset. This leaves little doubt that the rapid
growth is a result of the influence of mid-latitude westerlies on the
tropical storms as they move northward. With the exception of the NHC67,
which shows a steady 0.2-0.4 m/s bias, the MFM demonstrates the lowest
mean speed errors for the northern subset. The CLIPER, SANBAR and NHC73
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display the worst performance in this category. For the southern subset,

the SANBAR model displays the least bias in the predicted storm speed. The
SANBAR, MFM and NHC72 average model forerast speeds are faster than the
observed speeds at 36 hours while the CLIPER and NHC73 display a
distinctly slow bias from 24-48 hours.

In general, the NHC67, NHC72 and MFM are the models which have the
lowest systematic speed errors. The distribution of the speed errors for
these models are displayed in Figure 2.11. Although both statistical models
have slightly lower mean errors, the distribution of those errors is much
broader around the mean than in the case of the MFM. Almost 75% of the MFM
speed error distribution lies between -2 to 2 m/s while less than 60% of
the distribution for the NHC67 and NHC72 fall in this range. This suggests
that the MFM is actually better at forecasting storm speed as well storm
track. The results of the ATE analysis in the previous section suggested

that the MFM is the superior model for storm speed prediction and this

analysis confirms that finding.
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3. Combined Confidence Weighted Forecast (CCWF) Scheme

3.1 General Concepts

The goal in tropical cyclone track forecasting is to consistently
provide the most accurate track forecasts possibie. Research over the past
two decades indicates that the official forecasts have not improved
significantly during this time. The results of the previous chapter indicate
that the objective guidance models are not providing the accurate guidance
needed by the forecasters. In fact, it can be said that if operational
forecasts are to improve, then the guidance from objective models must
improve. The analysis of the model forecast errors indicates that the MFM
is the only model which provides significant improvement over the official
forecast at 36 hours and beyond. Yet economic and computer time
considerations prevent this model from being used except under certain
forecast scenarios. The lack of consistently accurate track predictions
from the objective models makes the task of operational track forecasting
all the more difficult. With the results of up to seven objective guidance
models available, the conflicting results of these models can produce more
confusion than assistance.

The concept of creating a mean track forecast from the output of
several track prediction models is not a new one, however, recent research
by Tsui and Truschke (1985) has fine tuned this process with the result
being the Combined Confidence Weighted Forecast (CCWF) scheme. The CCWF
scheme is based on the concept that every tropical cyclone track prediction
model yields the most accurate forecast with a certain frequency for any

given forecast period. These frequencies represent a confidence in the
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«’{“ ability of the model to produce an accurate forecast. The CCWF represents a
E: ‘consensus’ style forecast based on these confidence frequencies and the
’E: track prediction output from the objective guidance models. The storm
' \, track predicted by the CCWF is derived using
b
L
; ":g (Lat,Lon)cowr= 2 (Fy*(Lat,Lon) )/ ZF 3.1
where F, is the ronfidence frequency for a given model and (Lat,Lon), is
o the track prediction computed by that model.
!-; The distinct advantage of this forecast scheme is its inherent
;EE flexibility. Input to the CCWF can include track predictions from as many or
'7.1:; as few models as are desired or are available. The results of a test of this
...::; scheme using input from the NHC tropical cyclone track prediction models is
{ ;: contained below.
.
o 3.2 Test Results of the CCFW Scheme
o
: f‘ The data set used in the previous section was randomly separated into
;:1’ two subsets of 70 cases each. A table of confidence frequencies was
":’ tabulated from the first subset. These frequencies, which are listed in Table
:: 3.1, represent the total number of cases, out of 70, that each mode! provided
:‘i the most accurate forecast. Using these frequencies and the track
i—;} forecasts, from the NHC models in the second subset, a series of 70 CCWF's
J':;- were calculated.
., Table 3.2 contains the MFE's of the CCWF calculations and the MFE's for
.
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Table 3.1. Confidence frequencies of the NHC track prediction models.

Frequencies are based on a total of 70 cases and represent the number of
most accurate forecasts.

- — - — - - —— - - -~ - - - - -

MODEL FORECAST INTERVAL (HR)
12 24 48
CLIPER 10 9 2
NHC67 16 15 15
NHC72 6 S 7
NHC73 13 1 7
SANBAR " A 8
MFM 15 lo 28

the NHC models for the independent subset of 70 cases. Several
combinations of input data from the track prediction models are listed
including input from as few as two and as many as all six prediction
models. The results indicate a wide variation in accuracy for the consensus
style forecast.

Again it is easier to interpret the accuracy of the CCWF's by analyzing
their performance skill ratings. Fig 3.1 displays the performance values of
some of the CCWF's and the individual models. The CCWF(ALL) scheme is the
version which incorporates the track prediction output of all the NHC
models excluding HURRAN.  From the graph it is evident that this version
performs modestly well at 12 and 24 hours by outperforming CLIPER by 23%
and 30% at these respective time periods. Of the remaining versions oi the
CCWF scheme, various combinations of the NHC67, NHC73, SANBAR and MFM

seem to perform the best. For two-model input versions, the mix of the
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Fig. 3.1.  Performance of various NHC models and CCWF models relative to
CLIPER. Computed values are for 70 storm cases.
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Table 3.2. Mean Forecast Errors (Km) for NHC track prediction models and
CCWF's based on various input from NHC models. Code for input to
CCWF's is : 7(NHC67), 2(NHC72), 3(NHC73), C(CLIPER), S(SANBAR)

and M(MFM). Sample size is 70 cases.

i o - - - —— - —— Y — - " - - — - -

MODEL FORECAST INTERVAL (HR)
12 24 48
CCWF(2 MODEL INPUT)
7,2 915 185.0 434.1
7,3 879 1941 415.9
7,5 92.6 181.5 425.3
M 826 143.8 2849
2,3 93.9 179.8 421.6
3,5 92.7 185.2 4119
3M 85.5 1545 283.7
SM 88.5 151.6 2753
CCWF(3 MODEL INPUT)
7,2,3 89.1 181.7 413.8
7,3,C 89.8 181.6 4126
7,3, 88.9 176.8 402.1
7,3M 779 1449 280.3
7,5M 80.2 1445 287.1
2,5M 85.9 153.0 276.1
3,5M 80.7 146.4 2734
C,5M 83.7 154.3 280.7
CCWF(4 MODEL INPUT)
7,2,3,C 90.8 1827 4122
7,2,5M 814 148.8 294.2
2,3,5M 82.1 150.4 280.2
7,3,5M 78.8 146.6 2914
7,3,CM 79.0 1485 289.5
7,3,C,S 90.6 181.5 406.0
CCWF (5 MODEL INPUT)
7,2,3,C,S 91.3 1824 406.5
7,2,3,5M 80.4 150.1 298.9
7,3,C,SM 80.6 152.5 2989
CCWF(ALL MODELS)
7,2,3,C,5M 82.0 156.1 305.1
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" Table 3.2. Continued.
e ———
3:"- MODEL FORECAST INTERVAL (HR)
R 12 24 48
. CLIPER 106.9 2238 4889
W NHC67 93.5 1846 4553
0 NHC72 103.0 2124 460.9
! NHC73 90.0 195.0 4280
0 SANBAR 105.0 212.1 4722
( MFM 98.9 1805 2983
(5
>
.)
[/
Z‘.: NHC67 and MFM as well as the SANBAR and MFM combination are the most
_3:*_1 accurate. For three-model input versions, the best combinations over all
#' periods is the blend of the NHC67, NHC73 and MFM. The performance skill of
Ty
y 4 this CCWF version is represented by CCWF(BC) in Fig. 3.1.
i.'.
E‘ The most striking feature in Fig. 3.1 is the magnitude by which the
’3; CCWF schemes outperform the individual models at the early forecast
K= periods. The CCWF scheme performance skills surpass the skill of the most
o
:‘: accurate models by 10-15% at the 12 and 24 hour periods. Only at 48 hours
‘:‘._ does the perfromance skill of the MFM keep pace with the skill of the CCWF
schemes. This analysis indicates that the CCWF concept provides some hope
* for improved guidance at the early forecast periods.
. Using one set of confidence frequencies to compute both the latitude
; and longitude is a very simple version of the CCWF. To test if a slightly
i 5 more intricate version would result in more accurate track forecasts, a set
sl |
‘.f of confidence frequencies was tabulated for both latitude and longitude |
E calculations. For this version of the CCWF scheme, the track forecast *
3
N '
J
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: »
)
?:;. (Lat, Lon)eewro = (Z(Fip* Laty, ) /2F 1, Z(F2* Long) /2F2,) 32
D]
el | . . |
o where Fl,, is the latitudinal confidence frequency and F2, is the
O
)
f longitudinal frequency.
i The results of the track predictions using the more intricate version of
e
z;.;; the CCWF (referred to as CCWF2) are listed in Table 3.3. A brief comparison
o
'~ < between these MFE's and the results in Table 3.2 indicates that the CCWF2
-] forecasts do not exhibit any significant improvement over those of the
[P
:’." CCWF. Infact, the MFE calculations vary very little between like versions
-’N.
of the CCWF and CCWF2. As was the case with the CCWF, versions of the
« CCWF2 which use input from the NHC67, NHC72 and MFM provide the best
A2
::Z_:_ overall performance.
: Although the CCWF2 does not improve over the CCWF from a perspective
- of average FE's, analysis of the forecast error components may identify
=2
b "E other traits of the CCWF2 scheme which make it a more desirable version of
3 the forecast scheme. Fig. 3.2 displays the along track (ATE) and across
.;\': track (CTE) errors for both the CCWF and CCWF2 where input from all
Wl models and from the best combination are used. Two distinct features are
"'°: evident in Fig. 3.2. First, both forecast schemes have relatively small ATE's
o when compared to the individual models. The ATE values of the individual
Ib models were always negative and usually increased with each time period.
A
, :i‘c In contract, the CCWF2 exhibits a positive ATE at 12 hours indicating that
J-' the scheme tends to create track predicitons which translate into storms
o
°
-
:;.
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Fig 3.2. Along track versus across track errors (Km) for various

versions of CCWF and CCWF2 forecast schemes.
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:;:":; Table 3.3. Mean Forecast Errors (Km) for CCWF2's. Code for input
I-?-* models is same as in Table 3.2. Sample size is 70 cases.

n-)' """""""""""""""""""""""""""""""""""""""""""""
Y MODEL FORECAST INTERVAL (HR)

e 12 24 48

N CCWF2(2 MODEL INPUT)
o 7,2 92.6 1850 4282
. 7,3 87.9 1799 4037
o 7,5 925 181.1 4249

e 7M 813 1455 2845

I 2,3 95.2 1945 4094
o 3,5 922 185.1 4133

= 3M 84.7 1550 2940
- S,M 88.5 153.3 2922
ooy CCWF(3 MODEL INPUJT)
R 7,2,3 90.2 1819 4023
- 7,3,C 90.1 1809  400.4
P 7,3,5 88.7 1768 3952
o 7,3M 77.1 1458 2894
e 7,5M 79.7 1551 2937
o) 3,5M 80.6 1463 2983
e C,5M 82.7 1545 2963
o CCWF (4 MODEL INPUT)

27 72,3C 91.7 1827 4014
[ 7,2,5M 81.1 1515  308.0

- 2,3,5M 81.8 1525 3083

? 7,3,5M 779 1467 3086
e 7,3,CM 785 1500 3015
s 7,3,C,S 90.7 1802 3973
ry CCWF(S MODEL INPUT)
e 7,2,3,C,S 844 1821 3973
o 7,2,3,5M 80.0 1521 3171
__3 7,3,C,5M 795 1516 3137
PO CCWF(ALL MODELS)
- 7,2,3,C,5M 81.4 1575 3242
' :~)\

<
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\_ speeds which are faster than the actual storm speed. Second, the CTE
ﬁ values are very small at 12 and 24 hours ,but, they increase to large left of
\ track biases at 48 hours. This rapid growth is somewhat suspect and is
o analyzed using Figure 3.3 which displays the distribution of the CTE's at 48
N hours. In ail four forecast schemes, the CTE's have a small percentage of
‘o
». observations that fall in the -1300 to -1400 Km range. With a total of 70
_‘ observations in these ditributions, two observations in that large negative
',\ range would bias the CTE values by approximately -30 km. If these outlying
'3';{ observations are removed, the CTE values would lie around -40 Km instead
. of =70 Km.
> From this analvsis two conclusions are drawn. First, the CCWF schemes
do display less bias in terms of ATE and CTE components relative to the
(, individual models. Second,the CCWF2 scheme does not improve significantly
L)
! on the more basic version of the CCWF.
Ko
Wy
J 3.3 Comparison of CCWF to the Official Forecast
L Results from the previous section display the CCWF's ability to
L] improve on the track forecast guidance provided by the individual models.
Apparently the various model biases are somewhat neutralized in the
‘_3'.3 combined forecast format which allows for lower MFE's. In addition, the
& CCWF provides significant improvement over the official forecast. In
:f- particular, the CCWF exhibits, on average, about 12%, 20% and 26%
v
> improvement over the official forecast at 12, 24 and 48 hours respectively.
W
' A more detailed comparison of the CCWF and official forecast is
:" contained in Table 3.4. This chart is a direct comparison to determine the
L)
v
L |
4
& !
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Table 3.4 Comparison of CCWF and Official forecast accuracies. Columns
represent the number of CCWF's which were more/less accurate than the
Official forecast and the net gain/ioss in accuracy .

MODEL FORECAST(HR) NO. MORE ACCURATE / NO. LESS ACCURATE/
NET GAIN(KM) NET LOSS(KM)

CCWF(ALL) 12 39/41.1 31/30.0

24 47/78.6 23/48.7

48 48/182.8 22/774
CCWF(BC) 12 39/50.1 31/319

24 48/99.7 22/57.6

48 52/195.6 1841236
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number of more accurate forecasts provided by the CCWF and the net gain in

- ey e 3

O ~ i
KAV, ) QU

accuracy as compared to the official forecast. At 12 hours, the CCWF and
official forecast perform about equally in terms of the number of more
accurate forecasts and the net gain in accuracy. By 24 hours, the CCWF is
more accurate 67% of the time. Just as important, the net gain in accuracy
when the CCWF is the most accurate is almost twice the accuracy lost when

the official forecast is more accurate. At 48 hours, the results are similar.

2; The CCWF(ALL) still creates more accurate forecasts 67% of the time but
f the ratio of net loss to net gain in accuracy is almost 3 to 1.
‘ J A cautionary comment must be made at this point. Due to the hurricane
advisory release schedule, official forecasts are usually disseminated
before the output from the SANBAR, NHC73 and MFM models are available to
( the forecasters. Therefore, the CCWF does have a decided advantage over
,:g the official forecast especially considering that the MFM and NHC73 are
,,3’ major components of the CCWF(BC) model. Despite this advantage, the CCWF
scheme clearly has the potential to provide skillful track prediction
. guidance.
It is also important to note that the results of this test represent a
o minimum skill version of the scheme in terms of the processes by which
.,) model input is selected. Information about the forecast situation was not
':l': used to determine input to either the CCWF(ALL) or CCWF(BC). To obtain the
;J maximum accurarcy from the CCWF, the forecast scenario must dictate
which NHC model track predictions are included as input to the CCWF
scheme. Analysis of model traits, as those in Chapter 2, as well as
o" rules-of-thumb must weigh heavily in this decision process if the CCWF is
'5'3'. to be effective.
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An attempt was made to incorporate the forecast situation by
stratifying the data set by latitude as well as storm speed, however, the
results of these CCWF calculations could not improve on the accuracy of the
earlier tests. With a much larger data set, stratifications by latitude,
longitude, storm speed, previous track characteristics and other storm
traits could improve the selection process and thereby improve the accuracy
of the CCWF scheme.
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4 Analysis of Relationships Between Real Time Variables and
NHC Track Prediction Model Forecast Errors

4.1 General Comments

The previous chapter offers the resuits of one method for improving
the guidance provided by objective track prediction forecast models. A
second possibility for improving this guidance comes from recent research
by DeMaria (1985a). This research indicated that the track of a vortex in a
barotropic model is more sensitive to initfal position errors in regions
where the Laplacian of the vorticity was positive. As a result of this,
DeMaria (1983b) attempted to use real time variables to predict the
magnitude of forecast errors for certain track prediction models. The
vorticty Laplacian vZg , the magnitude of the vorticity gradient | v ¢|, the
current storm speed and the difference between the storm motion and the
motion of the environmental flow of the deep-layer mean winds (net speed)
were used in a linear regression model to predict the forecast errors of the
MFM and the Navy's Nested Tropical Cyclone Model.

In that study, 11 cases were used and coefficients of multiple
determinations as high as 0.85 were obtained from the linear regression
models. This indicated that a large percentage of the variance in track
prediction model forecast errors might be explained by these selected
variables. However, the extremely small data set used by DeMaria does
generate some questions as to the generality of the results. More
observations are necessary to confirm that this technique of predicting

forecast errors is valid.
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4.2 Data and Independent Variable Selection

To test this technique, a subset of 49 forecast cases from the original
sample of 140 cases were selected. Members of this subset are identified
in Appendix A. The independent variables used by DeMaria are included in
this study.. Demaria (1985b) discusses how larger values of | v¢ | and
regions of positive v2¢ can affect the track prediction characteristics of
a barotropic model. Net speed, the difference between storm speed and the
speed of the environmental flow, should also affect the accuracy of dynamic
models since the storm is not moving at the same speed, or possibly
direction, as the steering current. Therefore, as net speed becomes larger
so should the forecast errors.

Some additional variables are also tested. Julian date, which is used
as a predictor by some statistical track prediction models, is also expected
to have a relationship to forecast errors. For Julian dates in the Spring and
late Fall, larger forecast errors might be expected since the mid-latitude
westerlies become a more dominant feature in the atmospheric flow pattern
and can have a greater impact on the steering currents of tropical cyclones.
Storm vorticity, a measure of the circulation strength of the storm, may
also have an affect on forecast errors. Since bogus vortex circulations are
added into the wind field of dynamic track prediction models, the added
circulation may have an affect on the forecast accuracy of various size
storms. Vertical wind shear is another variable which affects tropical
cyclones. In specific, tropical cyclones develop in a low wind shear
environment, but, as they move northward they can encounter shear
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associated with the westerlies which definitely impacts on the processes
which maintain the cyclone. In addition to these variables, distribution of
kinetic energy at various wavelengths and 24-hour change in storm speeds
are tested for relationships to model forecast errors. An index of the
independent regression variables are listed in Table 4.1.

Data on variables related to the storm motion are obtained from the
best track information archived at NHC. Variables related to the wind field
are derived from hemispheric wind data archived at the National Center for
Atmospheric Research (NCAR). The NCAR data contains u and v component
winds at several pressure levels at 2.3° by 259 grid points over the

northern hemisphere. Variables like vZ; , 1 ¢ land ¢ are obtained by

first calculating the mass-weighted deep-layer mean wind at each point.
Then a spatial filter scheme discussed by Shapiro (1975) was applied to
remove the effects of the storm from the wind field. The appropriate
derivatives of the wind fields are calculated and the final values of ¢ ,

| v2 | and v2Z represent a 16-point mean value centered around the
storm.

The Julian date used is actually a measure of the departure, in number
of days, from the mean date of the hurricane season (Sept. 9th) and not the
actual Julian date. The percentage distribution of kinetic energy at various
wavelengths is derived from a spectral barotropic model which is briefly
discussed in Chapter 5. The wind fields in this model, are represented by
spherical harmonic functions and the coefficients of the functions can be
transformed to represent a percentage value of the kinetic energy at that
wavelength.

Measurement of the vertical wind <ii*ar is derived by two independent
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Table 41. Index of independent variables used in stepwise reression

technique to develop linear models for predicting the forecast errors of
track prediction models.

-

Vorticity

Magnitude of the vorticity gradient
Vorticity Laplacian

Net environmental wind speed
Storm speed

24 hour change in storm speed

Vertical wind shear

Julian date

Kinetic Energy at various wavelengths

© VW @ N O U N WN

—

Initial latitude of storm
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methods. First, the 16-point average of the u and v wind components are
calculated at several pressure levels. The wind shear components are
computed by subtracting the lower level mean wind component from the
upper level wind component. The second method involves the use of vertical
normal mode transform functions discussed in Fulton and Schubert (1985).
This transform process inputs a basic tropical vertical temperature profile
and derives a series of vertical structure functions using the Rayleigh-Ritz
method. Given these functions, the u and v wind profiles near the storm are
input and a series of coefficients are computed (one coefficient for each
vertical structure function). The summation of these vertical structure
functions multiplied by their coefficients yields the vertical wind structure
for a given case. For this study, vertical modes O through 10 are calculated.
The structures of selected functions are displayed in Figure 4.1. The
structure of the Oth mode is constant with height indicating little
contribution to vertical shear, but, the 10th mode displays large variability
with height indicating pronounced vertical shear. Therefore, if storms have
larger coefficients for the higher mode structure functions, this indicates
that there is more variability in the vertical wind profile which translate to
greater vertical wind shear.

The mean amplitude profiles for the vertical wind structure versus mode
number are displayed in Figure 42. The profile for all storms reveals that
most of the vertical structure is defined in the internal mode (mode 0) and
the first two external modes (modes | and 2). A comparison of the profiles
for northern and southern storms indicates that the southern storms have
much higher amplitudes for the 0,1 and 2 modes which is a reflection of the

reduced vertical wind shear in the lower latitudes.
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43 Results of Linear Regression Analysis

The previous section completes the initial phase of developing linear
regression models. Specifically, independent variables which are believed
to have relationships to the forecast errors of track prediction models are
selected for analysis. These variables are choosen because meteorological
theory and logical reasoning indicate that they may have an impact on the
magnitudes of these forecast errors.

The second step in the process is to determine if these relationships
do exist. This is accomplished by computing linear correlation coefficients
and analyzing plots of the dependent versus independent variables. The
linear correlation coefficients (r) between various track prediction model
forecast errors and the independent variables are listed in Table 4.2. Values
of these coefficients can range between -1 to +1 depending on the slope of
the relationship. For example, r=0.5 indicates a positive correlation
between the independent variable (X) and the dependent variable (Y). The
value of r does not automatically inform us of the statistical significance
of a linear relationship between X and Y, however, we can ¢btain an idea of
the percentage of the variance of Y that is explained by X. This is
accomplished by computing the coefficient of multiple determination which
is simply equal to r2. For an r=0.5, the r2=0.25 informs us that 25% of the
variance in Y is explained by X.

A scan of Table 42 indicates that very few of the correlation
coefficient values lie even in the region where 10% of the variance of the
track prediction model forecast errors are explained by any single

independent variable. This is not a hopeful sign for developing meaningful
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Table 42. Linear correlation coefficients for various real time
meteorological variables and selected track prediction model forecast
errors. Number in parentheses after model name represents forecast
interval. Variable VSFC(8-10) is the value of the vertical structure
function coefficients for modes 8-10. KE(15-23) represents the percentage
of Kinetic Energy in wavenumbers 15-23 .

IND. VAR.  Latitude Storm Maximum Vorticity Net
Speed wind Speed
MODEL
SANBAR(24) 0.00 0.07 -0.19 -0.09 0.22
SANBAR(48) 0.02 0.16 -0.17 -0.12 0.42
MFM(24) 0.08 -0.13 -0.10 2.10 0.15
MFM(48) 0.06 0.03 -0.10 0.18 0.32
NHC67(24) 019 013 -016  -002 -032
NHC67(48) 0.14 0.20 -0.04 -0.24 0.28
NHC73(24) 0.24 -0.17 -0.09 0.05 -0.29
NHC73(48) -0.02 0.08 0.12 -0.22 0.28
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{ Table 42.  Continued.

N IND. VAR, Magnitude Vorticity  Wind VSFC KE
~ Vorticity Laplacian  Shear (8-10) (15-23)
N Gradient (850-500mb)

3 MODEL

s

N SANBAR(24) 036  -0.06 0.23 010  -0.19
(

: SANBAR(48) 032  -0.12 0.08 007 -0.17
. MFM(24) 0.37 -0.28 0.01 038  -0.07
? MFM(48) -0.13  -0.01 -0.01 033 004
NHC67(24) 036  -0.21 0.03 042 009
| NHC67(48) 022  -021 ~0.02 062 0.3
>

v NHC73(24) 024 024 0.02 002 -0.20
: NHC73(48) 0.19  -0.04 0.12 -002 -0.26
¢
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~‘-\. linear regression models. However, we need to examine plots of the data to
;':’ determine if there exists other relationships (e.g. exponential, logrythmic,
: _-EE etc.) which would not be revealed through linear correlation calculations.
Selected plots of the independent variables versus model forecast
! :*:-EE errors are displayed in Appendix B. A visual survey of these plots reveals
that there are no apparent linear or non-linear relationships between the
'_ real time meteorological variables and the track prediction model forecast
"’Eﬁ errors.  The plot of the NHC67 48 hour FE versus the vertical structure
-5::. function coefficients for modes 8-10 indicates that the correlation
coefficient of 0.62 is largely a result of one outlying observation which
g;: unduely influences the analysis. If this observation is removed, the
__": correlation coefficient would certainly be smaller. Analysis of the data
.~.— plots also indicates that none of the variables exhibit any significant
-'Sé grouping of observations. The lack of grouping means that other
:: multivariate analysis methods like cluster analysis or discriminant
,_ analysis will most likely not be effective in developing predictive schemes
that relate these meteorological variables to the track prediction forecast
ﬁ:« errors.

9:; Despite the obvious lack of linear relationships, regression models
::;‘:; were developed to determine exactly how much of the variance of the FE's
":'1 can be predicted using these independent variables. The results of the
.; regression analysis is in Table 43. A stepwise technique was used to
f‘-‘- select variables for input to the regression models. This technique add
* variables to the regression model for which an F test is statistically
:,‘ significant at some level o . Each time a new variable is added to the
'~i model, all variables previously in the model are retested for significant F
-
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TABLE 43. Linear regression models developed by stepwise selection

. process for selected track prediction model forecast errors at selected
::; forecast times.  Independent variables are listed with corresponding
[ ;-33: regression coefficients (b) and R? values represent coefficients of multiple
A determination.

t

)

RN Dep. Var: NHC67(24 hours)

!."
N
oo Ind. Var. b Model F Value R2 CP)

Intercept =492 417 0.31 9.3

o Latitude 460

o | ve | 85.54
-5 v2; -21.69
Shear(850-500)  22.50

O e e
() Dep. Var: NHC67(48 hours)

e
- Ind. Var. b Model F Value R2 c(pP)
{ Intercept 760.00 6.18 0.38 78
b Storm Speed 20.43
o Net Speed -43.09
o 2 -21.09
- véL
iy Vorticity -63.79
8]
.;s Dep Var:NHC73(24 hours)

n..';:
' Ind. Var. b Model F Value R2 C(P)

° 7 Intercept 236.77 443 0.31 9.3

o 24 hour Storm
[~ Acceleration -10.05

o | ve | 11030

]

.‘u Net Speed -6.61
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f - Table 43. Continued.
NN Dep Var: NHC73(48 hours)
3 Ind. Var. b Model F Value R2 C(P)
Dl Intercept 499.48 5.36 0.20 9.8
G Net Speed 68.73
o Vorticity -48.98
1o 1ty
d Dep Var: SANBAR(24 hours)
L
o Ind. Var. b Model F Value R2 C(P)
) &. Intercept 60.57 6.26 0.37 9.6
R | ve | 105.63
e, Net Speed -12.73
o Shear(850-300) 31.96
r.)_n ____________________________________________________________________
B~
= Dep Var: SANBAR(48 hours)
Ind. Var. b Model F Value R2 C(P)
o Intercept 120.91 6.19 0.23 -4.1
e | v¢ | 181.69
o Net Speed 81.17
-1 Dep. Var: MFM(24 hours)
a7
'\.”v“
[ Ind. Var. b Model F Value R2 cP)
23 Intercept 125.85 7.90 0.36 -6.8
b | ve | 33.23

- v2¢ -27.55

Dep Var: MFM(48 hours)

Ind. Var. b Model F Value R2 c(P)
Intercept 179.23 2.39 0.05 -6.8
Shear(700-400) 3113
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values. If the F test is not significant, the variable is removed from the
regression model. The significance level selected for this experiment was
< =15,

As expected, these linear regression models are not effective at
estimating the magnitude of various track prediction model FE's. With
coefficients of multiple determination ranging from 0.05 to 0.37, large
errors in the predicted values of the FE's can be expected. The question to
ask at this point is - why doesn't the data reveal the relationships that
exist in theory? There are several possible answers to this question. First,
the tropical storm and its surrounding wind field are dynamic, constantly
changing in structure, however, many of the independent variables are static
measurements of dynamic variables. Therefore, these measurements may
not be representative of that variable 24-48 hours into the future. Second,
the large scale wind fields most certainly contain measurement errors in
the range of 10%, especially over the open ocean regions. This magnitude of
error in the wind field can create a magnitude of error of 100% or more in
the variables which are derivatives of the wind field(eg. ¢ ,| v¢ | and
v2{ ). This magnitude of error would most certainly affect the outcome of
a linear regression analysis.

It is important to note that this analysis was also performed on
latitudinally stratified data sets to determine if the results might be more
conclusive. Unfortunately, the results were very similar to those obtained
for the entire sample and therefore are not included in this section. Also,
because the FE's of the track prediction models are not normally distributed,
the possibility existed that a transformation of the data was necessary.

The FE values were transformed using a logrythmic function, but , again the
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results were not very different that the results discussed above.
44 Comparison of Storm Movement to Various Mean Layer Wind Fields

Questions concerning the appropriate initialization data for barotropic
numerical prediction models has been a focus of research since these
models were first developed. Early models used SOOmb data because the
models often assumed nondivergence. Since the S00mb level is close to the
mean level of nondivergence in the atmosphere, 500mb data was a logical
choice. However, Birchfield(1961) discovered that a model initialized with
mass weighted data based on information at 1000mb, 700mb, 500mb and
200mb produced better tropical cyclone track forecasts than models
initialized with 500mb data only. King(1966) compared model resuits using
500mb data only, the mass-weighted data from Birchfield and a 10
mandatory pressure level (1000mb-100mb) mass weighted data. The
resuits indicated that the data based upon the 10 mandatory pressure levels
provided the most accurate forecasts. At this time, this 1000mb-100mb
deep layer mean wind is used in most barotropic models including the
SANBAR model.

Research by Gray and George(1977) suggests that tropical cyclones
move at a speed close to that of the 700mb level and at a direction close to
the S00mb level. An extensive study of west Atlantic and Pacific tropical
cyclones by Chan and Gray(1982) found that tropical cyclones in the
Northern Hemisphere move 10°0-20° to the right of the surrounding

700mb-500mb flow. Other winds which also correlated well with cyclone

motion were the deep layer (1000mb-100mb) winds and the average of the
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200mb and 900mb winds. Vertical wind shear of the environmental wind
and variations in the zonal component of the cyclone speed affect the
relationship between the actual cycione movement and the various layer
mean winds.

in this section, the relationship between four different pressure
weighted layer mean winds and tropical cyclone movements are examined.
The data set consisting of the 49 cases is used and the mean winds are
calculated using a 16-point average(every 2.5° latitude and longitude)
around the storm center. The mean layer wind components at various levels
were used to compute pressure weighted deep layer mean winds for
1000mb-100mb, 850mb-300mb, 850mb-200mb and an average of the 850mb
and 200mb winds. These particular layer winds were selected because of
they are similar to the layers analyzed by Gearge and Gray(1977). Mean
directions of the pressure weighted winds and the cyclone movement are
computed fromy unit vectors. The unit vectors are talculated by first
normalizing the vector components by the vector speed to obtain unit vector
components. The mean unit vectors are obtained from the mean of the unit
components. Mean scalar speeds of the winds and of the cyclones are also
computed.

The results of this analysis are exhibited in Tabie 4.4 which represents
the mean differences in direction and speeds between the cyclone motion
and the layer mean winds. The data are stratified by latitude, storm speed
and central pressure. For directional differences, positive values ind cate
that the cyclone is moving to the right of the layer mean winds. It is
immediately evident that, on average, the tropical cyclones move to the

right of all the deep layer mean winds whiie they move to the left of the
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Table 44. Mean difference between tropical cyclone and surrounding flow
directions and speeds. Surrounding flows are deep layer mean for
1000mb-100mb,850mb-300mb,850mb-200mb and the average of the 850mb
and 200mb winds. Data are stratified by latitude, speed and minimum
central pressure(CP) of the storm.

DLM DLM DLM 850mb+
1000-100mb  850-300mb 850-200mb 200mb

DIRECTIONAL DIFFERENCE

Latitude

North of 25N 18 30 51 -16
South of 25°N 13 11 28 -20
Speed

Slow(< 5m/s) 55 67 67 -29
Fast (> 5Sm/s) 6 ) 16 -18
Intensity

weak(CP>980mb) 9 8 34 -19
Strong(CP<980mb) 43 4 52 -19
Overall Average 24 27 41 ; -20




Table 44. Continued

DLM DLM DLM 850mb+
1000-100mb  850-300mb 850-200mh  200mb

SPEED DIFFERENCE

Latitude

North of 259N 0.72 0.61 0.66 -0.38
South of 25°N 0.12 0.01 -0.37 -0.77
Speed

Slow(< 5m/s) -0.21 -0.29 -0.60 -1.16
Fast (> 5m/s) 1.25 111 1.20 0.21
Intensity

weak(CP>980mb) 0.17 0.20 0.22 -1.14
Strong(CP<980mb) 0.38 0.45 0.16 -0.07

Overall Average 0.40 0.35 0.2! -0.55
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850mb + 200mb average winds. In terms of variability, the 850mb + 200mb
average wind is the most consistent predictor of storm motion and has the
lowest mean directional difference (~ 20°) between the wind field and
cyclone movement. Of the deep layer mean winds, the integrated
1000mb-100mb wind has the lowest mean directional difference.

The mean speed differences indicate that on average the mean winds
are all within im/s of the cyclone speed (consistent with Chan and
Gray(1982)). In general, the 850mb+200mb average wind field
overestimates the cyclone speeds while the deep layer mean wind fields
tend to underestimate the storm speed. The 850mb+200mb average winds
badly overestimate the speed for slow storms and weak intensity storms.
The pressure weighted winds underestimate most for fast moving storms.

The underestimation of the speeds and the difference in direction can
also be examined in terms of the difference between the components of the
mean wind vectors and the cyclone motion vectors. An intriguing question
is whether these variations result equally from both components or if one
component is mostly responsible for the deviations between cyclone
movement and the surrounding mean wind flows. Figures 4.3 and 4.4 display
the distributions of the component differences between storm velocity and
the surrounding mean flow velocity. In Figure 4.3 it is evident that the
distributions of the various u-component diiferences are very much
centered around the O line of the distribution. For these surrounding flows,
the u-component differences have at least 80% of their distribution
between  *2 m/s while the 850mb +200mb average flow has 70% of its
distribution between * 2 m/s.

The distribution of the v-component differences are distinctly
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different. In Figure 4.4 the distributions clearly identify that the
v-component of the surrounding mean flows repeatedly underestimate the
v-component of the cyclone movement. For the deep layer mean flows, at
least 80% of the difference distributions are in the region where the
v-component of the cyclone movement is underestimated. it is evident that
the differences in the v-components contribute most importantly to the
variations in direction and speed between surrounding flows and tropical
cyclone movement. This finding is not totally surprising since various
natural phenomena have been long known to contribute to northerly
deflection of tropical cyclone motion. The beta effect, which results from
the variation in differential planetary vorticity advection around the
cyclone, causes the storm to drift to the northwest. Also, frictional drag of

the cyclone causes the cyclone to drift northward relative to the

environmental flow if the cyclone is embedded in an easterly flow.




Figure 44. Same as Figure 4.3 except for v-components of mean flows and

storm motion.
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5. Theoretical Test of the Effects of Sparse Data
and Initial Position Errors

5.1 General Comments on the Limits of Predictability

Discussions about the limits of meteorological predictability began
after the development of Numerical Weather Prediction (NWP) in the
mid-1950's. During the early stages of NWP, questions concerning what
constraints existed on the accuracy of these predictions were prevalent.
Observation density, computer capabilities and model designs were the main
factors restricting the NWP accuracy. Since that time, improvements have
been made in model sophistication and in the size of computers to handle
these models. As these improvements occur, there is always a question as to
whether the limits of predictability are significantly improved.

Lorenz(1969) states that our belief that exact predictability may
someday be attainable lies in the premise that the atmosphere is governed by
a set of physical laws which are used to express future atmospheric
conditions. However, Lorenz also identifies two major obstacles to attaining
the goal of perfect predictability. First, the governing laws of atmospheric
dynamics are not perfectly known. Second, even if the 1aws were perfectly
known, the current state of the atmosphere can not be perfectly measured.
Another complicating factor is that the governing equations are nonlinear.
The nonlinearity causes small errors in the initial condition to grow rapidly
with time. These concepts and others concerning atmospheric predictability
are also discussed extensively by Thompson (1857,1974) and Leith(1978).

Many theoretical experiments on the predictability of atmospheric
models have been conducted since the advent of NWP. Charney(1966) used a
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,('i = general circulation model to test the doubling time of root-mean-square
_.J errors of temperature. From these tests, he estimated the upper limits of
':;.\j atmospheric predictability at approximately three weeks. Lorenz(1965) used
.. a 28-mode 2-layer baroclinic model and found the limits of predictability
\ vary with the distribution of the kinetic energy spectrum. This relationship
: between predictability and the kinetic energy distribution indicated that
( nonlinear processes between various scales of motion were important and
Eﬁ that certain scales of motion can be more accurately predicted.
-f“"r Baumnhefner(1984) further investigated this growth in errors as a function of
?f horizontal scale. From this analysis, the limits of predictability were

estimated at approximately eight days for synoptic scale motions and about
three days for mesoscale (the scale of hurricanes).

s

. . 7

.

. R I
DU [T R S A
‘.‘-'."‘l LN

>

5.2 Model Description

Y o .

To test the effects of sparse data and initial position errors on model

_::
fj accuracy, a spectral barotropic mode! described by DeMaria(1987) is used.
i A',)
'-3‘:: This model is similar to the SANBAR model described in Chapter 1 except
L) -"
" that spherical coordinates and spectral methods are used. The governing
o equation for this model is
o
o
= r-LA _173_\1/_&1 1 3V dn
,’ -— - -
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(. i where = is absolute vorticity, v is the streamfunction, Ais the longitude,

::-# nis sine of the latitude, a is the earth's radius, @ is the earth's angular

:: speed and v is a term included to prevent the retrogression of longer

_‘, Rossby waves. The dependent variables » and v are expanded in a

’ truncated series of spherical harmonic functions. The indices for the

::* spherical harmonics are based on a triangular truncation system which

N allows for equal resolution over the sphere.

« The horizontal resolution of the model is based upon the upper limit of

" the triangular truncation (N). A rough estimate of the grid spacing over is

2

? y = (21 a)GN-1) 53

S

_‘J For a triangular truncation of N=128 a grid space equivalent of approximately

x 104 Km is obtained. The model is initialized by the deep layer

i\ (1000mb-100mb) mean winds analyzed by the National Meteorological Center

_ and equispaced every 259 latitude and longitude. The model domain is half

Ef‘ of the Northern hemisphere from 0°W to 180°W. The winds are used to

:j initialize the vorticity field and then equation 5.1 is solved foward in time

f.{ to determine the new location of the cyclone center.

\J As shown by Neumann and Pelissier(1981b), models incorporating

/ o previous storm motion into the forecasting scheme are somewhat successful

' in short term track forecasts. The persistence factor is also incorporated

into the model to help improve the early period forecasts. Persistence is ;
%: included by blending the initial wind field, in the vicinity of the storm, with |
', the vector movement of the storm. If V represents the initial wind vector |
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y and Vp represents the vector velccity of the storm at the initial time, then
ad
oo
"'Ej the wind field which incorporates persistence will be V.,
o
V)
»:‘E: Vi = (1-W)V +w v, 54
7
2
_ o where w o= exp(-(r/re)z) 55
3
o Here r is the radius from the storm center, re is the specified radius of
{
v: influence of the persistence factor. An r, value of 1500 Km is used in this
Eg experiment. In other words, the model wind field is modified by persistence
‘ _ through an exponentially decreasing function of the current vector motion of
3 the tropical cyclone. The reader is encouraged to review DeMaria(1987) for
y further model details.
Q The 49 forecast cases selected for this test are a subset of the criginai
-
:'J_: 140 cases and are identified in Appendix A by an *¥. The mean forecast errors
W of the CLIPER model and this spectral barotropic model(SBM) for these 49
'
o cases are listed in Table 5.1. The performance skill values associated with
]
;’,E; these forecast errors are displayed in Figure 5.1. It is evident that the SBM
.ﬁ,‘.
g:; exhibits poor forecast skill relative to CLIPER when persistence is not
_' included in the initial wind field. When persistence is included, the SBM does
"Eﬁ display skill relative to CLIPER at 12 and 24 hours, however, its skill
,\'.J'
:g diminishes at 48 hours.
o |
o
o |
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Table 5.1. Mean Forecast Errors of CLIPER and SBM with and without
persistence in the initial wind field. Errors in Km.

MODEL FORECAST INTERVAL
12 24 48 72
CLIPER 98.1 203.7 418.3 797.1
SBM(Persistence) 79.2 180.9 413.8 832.9
SBM(No Persistence) 116.8 218.1 489.9 931.1

9.3 Results from the Sparse Data Tests

Because tropical cyclones frequently track through open ocean regions
of the Atlantic, the initial wind analysis of dynamical track prediction
models can contain significant errors as a result of the lack of
meteorological sensing stations in the region. The spectral barotropic
model used in this study initializes the wind field by spherical harmonic
functions, with one function corresponding to each of the N wave numbers.
Since there is a 1arge spacing between meteorological sensing stations, the
large wavelength features are probably resolved fairly accurately, however,
the shorter wavelengths are most certainly not being resoived correctly.
The average station spacing of meteorological upper air stations is about
300 Km over the continental U.S. In the open ocean regions, this spacing is
at least twice as large. Since the smallest resolvable wavelength in the

data field is twice the station spacing, the minimum wavelength that can be
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Figure S.1. Performance of the spectral barotropic model relative to CLIPER

with a) persistence included in the initial wind field and b) without
persistence.
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{ well initialized in the model is approximately 600 Km over the continental
"'_-:_, U.S. and around 1000-1200 Km over the ocean regions.
-EJ To test the effect of sparse dat coverage, the model 1s executed with
. a triangular truncation of N=128 modes over half of the Northern
t:;. Hemisphere (from 0%W to 180°W). The first model simulation has the
g{: initial wind information from all 128 wavenumbers and develops track
( predictions from all 49 cases. The model simulation is then repeated with
:J information at shorter wavelengths being removed from the initial wind
.& field. To remove the data at shorter wavelengths, the coefficients of the
o spherical harmonic functions at these wavelengths are set to zero. For
wavelenghts near the desired cutoff, a cosine function is used to gradually
‘- reduce the coefficients to zero. This is to avoid a sharp change in the
coefficients which may cause shock waves and add noise to the wind field.
:‘f Model simulations are repeated several times, each time removing
E‘:} information from longer wavelengths, until only large scale synoptic and
o] planetary scale waves remain in the initial wind field. A total of seven
’1 simulations were executed in this study. All simulation have the 128 mode
: triangular truncation which translates to a grid spacing of 100 Km. The
o“ first repeated simulation retains data above 200 Km wavelength. The
~' remaining simulations retain data above 400, 600, 1000, 1500 and 2000 Km
“' wavelengths . These wavelenghts correspond to the wavenumbers 68, 34,
o 24, 14,9 and 7 respectively.
)3 The MFE's of the various model simulations are listed in Tables 5.2 and
_. 5.3 for simulations with and without persistence included in the initial
; wind field. Values are based upon comparison to the best track data.
_é Comparing the simulations where various wavelengths are removed from the
Sl
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Table 5.2. Mean Forecast Errors for model simulations, with various scales
of motion removed from the initial wind field. initial wind field includes
persistence wind information. Errors are in Km.

Scale Removed Forecast Interval
From Wind Field

12 24 36 48 60 72
None 79.2 1809 2830 4138 5982 8329
Below 200 Km 80.8 184.1 2819 3960 5540 7682
Below 400 Km 81.3 1845 2833 3985 5560 7710
Below 600 Km 80.9 183.1 2825 3975 5573 766.1

Below 1000 Km 85.6 1918 2978 4165 5697 7784
Below 1500 Km 97.3 211.0 3215 4502 6002 7986
Below 2000 Km 111.0 2314 3441 450.0 5957 7895

Table 5.3. Same as Table 5.2 except initial wind field does not include

persistence.

Scale Removed Forecast Interval

From Wind Field

12 24 36 48 60 72
X None 116.8 218.1 3372 4899 690.7 931.0

L if Below 200 Km 117.1 218.1 3373 4900 6906 9328
G Below 400 Km 119.3 2188 339.0 491.1 6909 9328
; : Below 600 Km 116.3 213.7 329.0 4852 6771 9130

ALY

Below 1000 Km 125.8 2419 3663 5216 7125 9520
Below 1500 Km 159.2 3077 4409 5824 7430 9576
Below 2000 Km 2079 3867 5519 686.1 8239 9947
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initial data field, it appears that removing data at the 600 Km scale has
very little effect on the MFE's at the 12-24 forecast period. Removing
scales of motion at 1000-1500 Km wavelengths increases the MFE's by

8-20% at 12-24 hours. This seems to indicate that scales below the order

of 1000 km have little influence on the track predictions or that these
scales were not accurately represented in the initial condition. Conversely,
the MFE's of the longer period forecasts, 60-72 hours, actually improve
when the shorter wavelengths are removed from the initial wind field.
Depending on what scales are removed, the MFE's display an improvement up
to 8%. Even when scales below 2000 Km are removed, the MFE's are 5%
smaller at 72 hours than the MFE's when all 128 wavelengths are included.
This seems to indicate that either the small scales are not well represented
and that errors in that portion of the wind field are translated into the
larger scales by 72 hours or that forecast errors at 72 hours are largely
random .

It is also possible to assess the error growth rates of a given model.
Instead of comparing the model forecast to the best track data, the model
forecasts are compared to other model forecasts. This is known as the
dynamical approach to examining error growth rates and is discussed
extensively by Lorenz(1969). In this approach, the model simulation which
has an unaltered initial state(no wavelengths removed from the initial
field) is considered the ‘perfect’ forecast for comparison purposes. The
model track forecasts based on an altered initial state are then compared to
the track forecasts from the ‘perfect’ model simulation and track errors are
calculated. These forecast errors somewhat represent the effect that

unresolved data at various wavelengths have on model accuracy.

--------




Ay p e
"ﬂ‘)“.-'}'f"ﬁ. P

555

- XY
g,

kYo BN .:'Jl'.

2l L]

(3
Pl el oy

R

Wl e
[ U VT P

AR PS AT YN
AL [Nl R S WY (A

e, Y

RAN RSN

s
b

)
e
. ]

v, -

S A R s NN Ay
B N N NI,

90
Figures 5.2 and 5.3 1ist the forecast errors from the dynamical approach
for simulations with and without persistence added to the intial wind field.
For non-persistence simulations, the error growth rates increase rapidly
when scales below 1000 Km are removed from the intial fields. For
persistence simulations, scales must be removed at 1500 Km before error
growth rates increase significantly. In Figure 5.2, the FE's where 1500 Km
scales are removed are comparible with the current MFE's of the MFM. for
the SANBAR model MFE's, the FE's where 2000 Km scales are removed are
comparible. However, data input for the MFM and SANBAR are being resolved
accurately at the 1000 Km scale( since the MFM is activated near 1and where
the station spacing is a little closer). If the MFM and SANBAR models
perfectly represented the physical 1aws which govern atmospheric motion,
then it would be expected that their MFE's would be equivalent to the FE's
corresponding to the minimum wavelength being resolved (1000 Km).
Because the these track prediction models MFE's are larger, two' subjective
comments can be made. First, a large percentage of the FE's of dynamical
track prediction models is a result of the inability to accurately measure
and represent meteorological variables at the sub-synoptic scales of
motion. Second, because the error magnitudes, from the dynamical
approach, are slightly smaller at the level where features are being
resolved than for the MFM and SANBAR track forecasts, it appears that
improvements to the model mathematics and physics might still reduce the
MFE's cf these models.
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Figure 5.2. Mean error differences(Km) between the ‘perfect’ model forecast
including all scales of motion in the initial wind field and the simulations
where scales below a) 200 Km, b) 400 Km, ¢) 600 Km, d) 1000 Km,

e) 1500 Km and f) 2000 Km are removed from the initial wind field. Line
g displays the error if the storm forecast position remained at the initial
position throughout the forecast period. This represents the theoretical
limit of error growth based on this dynamical approach. Simulations include
persistence in the initial wind field.
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{’;:v 5.4 Results From the Initial Position Error Tests

|

0 ? In a recent budget cutting decision, the U.S. Air Force's Air Weather
'f Service Branch has discontinued the wuse of WC-130 aircraft for
; reconnaissance flights into Pacific tropical cyclones. In the future, the
- main tool for determining the coordinate location of the storm center will
x__ be satellite imagery. Using aircraft navigational equipment was the
: simplest and most accurate method for determining storm location.
E Determining storm coordinates from satellite imagery will not be as

accurate, especially at night when infrared imagery must be used. The

1&] o

U LAY

y inaccurate assessment of storm location, which currently averages about 20
:;’ Km, may increase to as high as 75-100 Km for storms which do not have a
well defined center.

E;_ All tropical cyclone track prediction models require the initial storm
: position as intial data. The distance between the coordinates entered into
‘ the model in an operational situation and the actual storm coordinates, as
:‘ determined in post storm best track analysis, is known as the initial
\ﬁ postion (IP) error. It is anticipated that the loss of regular flight
? reconnaissance information could significantly increase the mean value of
\ the IP errors. To test the effect of increases in IP errors, the barotropic
model described in section 5.2 was initialized with IP errors of various
magnitude to the north, south, east and west of the actual initial position.
{ The MFE results are then compared to the MFE's of simulations without the
? artificial IP errors.

” The results of this analysis are listed in Table 5.4. A comparison of
és;.: the simulations with varying magnitudes of IP error yields some interesting
g
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( results. For simulations with IP errors of 50, 100 and 150 Km, the MFE's
: increase 17%, 56% and 106% respectively as compared to the MFE's of the
: N model without the IP altered. By 24 hours, the increase of the MFE's are

N

.“"‘ reduced to 2%, 8% and 19% respectively. By 48 hours, the percentage
2*: increase in forecast error is negligible even for |P errors of 150 Km. These
\';; results are consistent with geometric calculation of the theoretical effect
‘ ! of IP errors. Figure 5.4 represents three cyclone tracks; the actual track,
: the mode! forecast track without IP error and the model forecast track with
,._w'

:.“_fj IP error. From geometry, the following relationships are known:

¢

o E2 = (L + dcos«)2 + (d sina ) 5.6
' ) Algebraic manipulation of 5.6 yields

i

o (E/L) = ( 1+ 2d/L)cosa + (/L)% )1/2 5.7
@)

e

< where E/L simply represents the ratio of the forecast error for a simulation
"

E; without IP error to the forecast error for a simulation with IP error. Since
%'.

all values of « are equally likely, 5.7 can be used to find the mean value
of the ratio of E/L.

I
(E/L) = (l/2n)ﬁE/L) da
211
= (1/21 )_[(I s (/)2 + 2dL) )2 4 S8
0

From 5.8, it is evident that (E/L) depends only on the value of (d/L). For
shorter forecast periods (up to 12 hours), the value of (d/L) ~ 1, therefore

»l

S .;'-.-.-.~.~.~.«.,.='n?‘: @
R A N R N A A A ALY

]
5,8
)

o
Rt E N e T AT R Vet oty
B e e i A e R



RO
‘L-JJlﬁfJx{

[

[

Figure 5.4. Geometrical {llustration of best track forecast, model forecast
with no IP error (point A) and model forecast with an IP error magnitude of
d (point B). The line L represents the forecast error assoctated with no IP
error and the line E represents the forecast error with associated with an
(P error value of d.

N

RADNIAL
SAANAMA]

N
i

P ';»\-.Q ®
5

e

L] 'k"'

1

AL G W

!
L4

.l
.t_,
¢

O ; .t
X S - S RCAIAS A et Ut Nt E TR ettt Tty ety Sy ateate T oty e gl 1Ty Ry ey e ¢
‘;::!‘:'» 4% .!.l'-.:..n Wl a,': o‘:’:’l’!’h’!‘l o.l.»-‘l'!,ﬁ.!."'!.l'g b‘: WY, A".‘l'!'l.!‘. -.l.-.l.e.l.-‘l...l.~‘0'.'l‘. l'-‘ﬁ.n l.»‘l':‘l.-'l‘-.‘.\".t-."“:"-“'-".".",.:»",."!"" '.""‘" at-hb




96

the value of the ratio (E/L)” 2 and we expect that the IP errors will have a
significant impact on the track forecast accuracy. As forecast time
increases, the value of L increases. This results in a value of (d/L)~ 0 and a
value of (E/L)” 1. From this theory, IP errors should be less and less
influential on the MFE's as forecast interval increases provided that d does
not increase rapidly with time. These theoretical findings agree very well
with the results from the model tests on the effect of IP errors in Table
5.4

The dynamical approach to error growth rate used in section 5.3 can
also be applied to the IP error problem. Again, the model simulation without
altered initial positions is considered the ‘perfect’ model for comparison
purposes. The model simulations with altered initial positions are executed
and the error growth rate is based on the difference between track
forecasts. )

These results are listed in Table 5.5. For simulations with
persistence in the wind field, the errors decline about 10% from the
magnitude of the IP error by 36 hours and then increase to larger than the IP
error by 72 hours. |t appears that the model begins to adjust for the IP
error in the early forecast periods, but, the IP error results in error growth
by 72 hours. The results for the non-persistence simulations are similar.
Therefore, it is fair to say that IP errors are not a major contributor to the

observed forecast errors beyond 24 hours.
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Table 5.4. Mean Forecast Errors for model simulations with initial position
error added to storm coordinates. Errors in Km.

Simulations with Persistence

Magnitude of Additional Forecast Interval
IP Error (Km) 12 24 36 48 60 72
0 79.2 1809 2830 4138 5982 8329
50 92.6 1857 2841 4169 6000 8319
100 123.6 1978 2914 4240 6042 8320
150 1634 2183 3048 4333 6100 8330

Simulations without Persistence

0 1168 2181 3372 4899 690.7 931.0
100 133.0 2272 3435 4971 6958 950.0

Table 5.5. Mean error difference between ‘perfect’ model forecast including
no added initial position error and simulations with added initial position
error. Errors in Km.

Simulations with Persistence

Magnitude of Additional Forecast Intervatl
IP Error (Km) 12 24 36 48 60 72
50 48.0 454 446 490 524 61.7
100 95.8 88.7 862 908 992 1132
150 1441 1331 131.2 1383 151.0 1718

Simulations without Persistence

100 69.5 70.1 725 834 111.7 1400
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6. Summary and Conclusions

In this research, various aspects of the error characteristics of
tropical cyclone track prediction models are analyzed. Operational track
prediction models from NHC are assessed in terms of the mean forecast
errors, error bias and component errors relative to storm motion. Output
from these models are used to assess the characteristics of a ‘consensus’
style track forecast scheme known as the Combined Confidence Weighted
Forecast scheme. Several independent variables which are related to
characteristics of the large scale flow are tested for use in linear
regression models to predict the magnitude of track prediction models FE's.
Finally, theoretical tests on the effects of sparse data and initial position
errors are conducted using a spectral barotropic model. Many conclusions
can be established from this research, some of which are listed in the
following paragraphs.

Of all the operational track prediction models currently used at NHC,
the MFM appears to be the most desirable mode! (under the forecast
scenarios which it is currently activated). Beyond the 12-hour forecast
period, the MFM consistently displays the lowest MFE. Relative to storm
motion, it also displays the least amount of bias in termé of across-track
and along-track motion. Plots of scalar speed errors indicates that the MFM
is most frequently the best predictor of storm speed. Also, recent
improvements to the initialization process of the MFM have lead to improved
12-hour forecasts.

The CCWF scheme appears to provide potential for providng accurate

track forecasts for western Atlantic tropical cyclones. On average, the
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:'f combination of the NHC67, NHC73 and MFM provides the lowest MFE's for the
A CCWF scheme. These results represent a minimum skill version of the
+ e
.E'; scheme. Incorporating storm characteristics into the selection process of
N
.., model input should improve the accuacy of its forecasts.
t
o Variables such as net speed, magnitude of the vorticity gradient, the
_{..:{
:;:j vorticity Laplacian and others are not effective as independent variables in
:' linear regression models which attempt to predict the magnitude of track
e FE's. The ineffectiveness is largely a result of the inability to accurately
< measure and represent the wind field.
'&J"
aﬁ The removal of various scales of motion from the initial wind field
(
o has an affect on the model forecast accuracies. The MFE's grow rapidly
>
o when scales of motion greater than about 1000 Km are removed from the
" el
o initial wind field. Using the dynamical approach to testing error growth
R rates, it appears that a large percentage of the current dynamical track
, prediction models FE's is a result of the large station spacing over the ocean
: regions which causes poor representation of the smaller scales of motion.
e Also, initial position errors can have a dramatic affect on the accuracy of
T
":‘.} 12-hour track forecasts. By 24 hours, the affect is dramatically reduced
'},’-‘. and by 72 hours the affect of IP errors is negligible. This finding is
°
~ consistent with a geometric assessment of this problem.
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Storm cases used for this research
* Indicates Storm is part of 49 case subset

Name
Belle
Belle
Belle
Belle
Emmy
Anita
Anita
Anita
*Ella
Elia
*xElla
Ella
Ella
Ella
Ella
Bob
*David
David
David
*David
David
David
*David
David

Frederick
*Frederick
Frederick
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APPENDIX A

LDate

8/ 7/76
8/ 7/76
8/ 8/76
8/ 8/76
8/25/76
8/30/77
8/31/77
8/31/77
8/31/78
9/ 1/78
9/ 1/78
9/ 2/78
9/ 2/78
9/ 3/78
9/ 3/78
7/11/79
8/31/79
9/ 1/79
9/ 1/79
9/ 2/79
9/ 2/79
9/ 3/79
9/ 3/79
9/ 4/79
9/ 9/79
9/10/79
9/10/79

Mty

() ()
ERERAINI e

Time(GMT)

00
12
00
12
12
12
00
12
12
00
12
00
12
00
12
00
12
00
12
00
12
00
12
00
12
00
12

Wyt
.l“‘.n....

NMax Wind
40
35
80
95
65
50
70
75
60
90
110
105
80
70
85
65
145
130
65
65
70
80
85
85
45
55
65
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{ Name Date Time(GMT) Max Wind
e
3 *Frederick  9/11/79 00 75
;::: Frederick 9/11/79 12 85
5 *Frederick 9/12/79 00 100
s Frederick 9/12/79 12 15
o Henri 9/18/79 12 50
po *Allen 8/ 6/80 12 15
b Allen 8/ 7/80 00 135
( Allen 8/ 7/80 12 155
N Allen 8/ 8/80 00 155
2 *Allen 8/ 8/80 12 115
- *Jeanne 11/10/80 12 50
.“ % Jeanne 11/11/80 12 65
- Jeanne 11/12/80 00 85
i *Jeanne 11/12/80 12 65
N Jeanne 11/13/80 00 55
1 Jeanne 11/13/80 12 60
. Jeanne 11/14/80 00 55
WY Dennis 11/16/81 12 35
e Dennis 11/17/81 12 35
v, Dennis 11/19/81 00 35
Dennis 11/20/81 00 50
Emily 9/ 3/81 12 60
5 Emily 9/ 4/81 00 65
o Emily 9/ 5/81 00 75
- Emily 9/ 5/81 12 75
o *Floyd 9/ 6/81 00 80
% Floyd 9/ 6/81 12 90
= *Floyd 9/ 7/81 00 100
o Floyd 9/ 7/81 12 100
Y Gert 9/ 9/81 12 35
o *Gert 9/10/81 12 60
- Gert 9/11/81 00 80
I Harvey 9/13/81 00 70
o
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I Name Date Time(GMT)  Max Wind
".'1.:
s *Harvey 9/13/81 12 75
.j ?.i. *Harvey 9/14/81 00 95
N Katrina 11/ 5/81 00 - 60
s *Alberto 6/ 3/82 12 50
oo Alberto 6/ 4/82 00 65
. Debby 9/14/82 12 35
- *Debby 9/15/82 00 65
( Debby 9/16/82 00 95
= *Debby 9/16/82 12 95
o0 *Alicia 8/16/83 12 55
" *Alicia 8/17/83 12 75
s Alicia 8/18/83 00 95
T *Barry 8/24/83 12 50
- Dean 9/28/83 00 45
Diana 9/ 9/84 00 45
- *Diana 9/ 9/84 12 S5
r Diana 9/10/84 00 60
i *Diana 9/10/84 12 65
N Diana 9/11/84 00 - 80
2 *Diana ~ 9/11/84 12 100
S Diana 9/12/84 00 115
! *Diana 9/12/84 12 95
' Diana 9/13/84 00 85
b Isidore 9/27/84 00 45
v Isidore 9/28/84 00 45
. Josephine 10/ 8/84 12 40
. * Josephine 10/ 9/84 00 55
1} Josephine 10/ 9/84 12 60
o *Josephine 10/10/84 00 60
o Josephine 10/10/84 12 70
75 * Josephine 10/11/84 00 75
Z;j Josephine 10/11/84 12 85
32 Josephine 10/12/84 00 90
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r Name Date Time(GMT)  Max Wind
K
L *Josephine  10/12/84 12 90
E;:. Josephine  10/13/84 00 85
a: Josephine 10/13/84 12 80
\ *Josephine 10/14/84 00 65
» g Josephine 10/14/84 12 70
Koa Josephine 10/15/84 00 70
o2 Bob 7/23/85 00 35
( *Bob 7/23/85 12 40
- Bob 7/24/85 00 35
o Danny 8/14/85 00 50
o4 *Danny 8/14/85 12 70
o Danny 8/15/85 00 50
. *E lena 8/29/85 00 65
N Elena 8/29/85 12 75
2 Elena 8/30/85 00 90
: *Elena 8/30/85 12 90
¢ Elena 8/31/85 00 90
Elena 8/31/85 12 95
) Elena 9/ 1/85 00 105
;_* Elena 9/ 1/85 12 110
[ Elena 9/ 2/85 00 70
) *Gloria 9/22/85 12 65
3 *Gloria 9/23/85 12 95
v Gloria 9/24/85 00 100
N *Gloria 9/24/85 12 15
° *Gloria 9/25/85 12 55
R Isabel 10/ 8/85 12 60
s *|sabel 10/ 9/85 00 60
=~ Isabel 10/ 9/85 12 )
N *|sabel 10/10/85 00 40
2 Isabel 10/10/85 12 35
B *Juan 10/26/85 12 45
& Juan 10/27/85 00 55
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' Name Date Time(GMT) Max Wind
o *Juan 10/27/85 12 55
oy Juan 10/28/85 00 65
e Juan 10/28/85 12 75
o Juan 10/30/85 00 75
35 Juan 10/30/85 12 65
o Juan 10/31/85 00 60
o Juan 10/31/85 12 55
e Kate 11/16/85 12 55
. *Kate 11/17/85 00 75
S Kate 11/17/85 12 75
B Kate 11/18/85 00 80
o *Kate 11/18/85 12 80
o Kate 11/19/85 00 95
& *Kate 11/19/85 12 90
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Plots of independent variables versus track forecast errors
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